首页> 外文OA文献 >Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters
【2h】

Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters

机译:联合3D血管分割和中心线提取,使用带有可控滤镜的倾斜霍夫森林

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Contributions We propose a novel framework for joint 3-D vessel segmentation and centerline extraction. The approach is based on multivariate Hough voting and oblique random forests (RFs) that we learn from noisy annotations. It relies on steerable filters for the efficient computation of local image features at different scales and orientations. Experiments We validate both the segmentation performance and the centerline accuracy of our approach both on synthetic vascular data and four 3-D imaging datasets of the rat visual cortex at 700 nm resolution. First, we evaluate the most important structural components of our approach: (1) Orthogonal subspace filtering in comparison to steerable filters that show, qualitatively, similarities to the eigenspace filters learned from local image patches. (2) Standard RF against oblique RF. Second, we compare the overall approach to different state-of-the-art methods for (1) vessel segmentation based on optimally oriented flux (OOF) and the eigenstructure of the Hessian, and (2) centerline extraction based on homotopic skeletonization and geodesic path tracing. Results Our experiments reveal the benefit of steerable over eigenspace filters as well as the advantage of oblique split directions over univariate orthogonal splits. We further show that the learning-based approach outperforms different state-of-the-art methods and proves highly accurate and robust with regard to both vessel segmentation and centerline extraction in spite of the high level of label noise in the training data.
机译:贡献我们提出了一种用于联合3-D血管分割和中心线提取的新颖框架。该方法基于我们从嘈杂的注释中学到的多元Hough投票和倾斜随机森林(RF)。它依靠可操纵的滤波器有效地计算不同比例和方向的局部图像特征。实验我们在700纳米分辨率的大鼠视觉皮层的合成血管数据和四个3-D影像数据集上验证了我们方法的分割性能和中心线准确性。首先,我们评估该方法的最重要的结构组成部分:(1)与可转向滤波器相比,正交子空间滤波从质量上显示了与从局部图像补丁中学习到的本征空间滤波器的相似性。 (2)标准RF对抗倾斜RF。其次,我们比较了针对(1)基于最佳定向通量(OOF)和Hessian的本征结构进行血管分割,以及(2)基于同构骨架化和测地线的中心线提取的不同方法的总体方法路径跟踪。结果我们的实验揭示了可控性优于特征空间滤波器的优势,以及斜向分裂方向优于单变量正交分裂的优势。我们进一步表明,尽管训练数据中的标签噪声很高,但基于学习的方法的性能优于不同的最新方法,并且在血管分割和中心线提取方面都具有很高的准确性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号